Machine-aided guessing and gluing of unstable periodic orbits

Journal Club

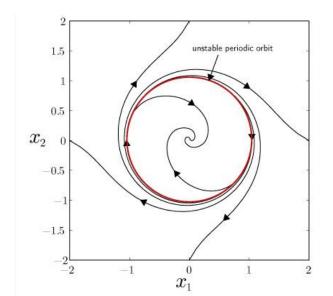
Will An

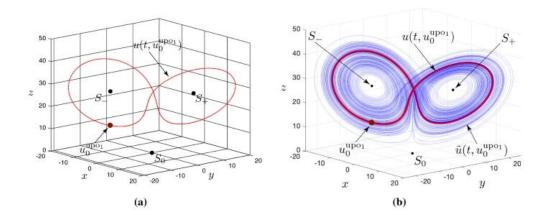
Introduction

- This paper uses Machin-aided method to obtain initial guesses of Unstable Periodic Orbit (UPO) in the chaotic regime.
- It first uses autoencoder to decrease the dimension of chaotic regime to a latent space and then generate guesses.
- It also utilizes two optimizers to converge the initial guesses to true UPO with a machine precision.
- Besides those, it tries to glue gained UPOs in the latent space to form longer UPOs as well.

Introduction - UPO

- UPOs play an important role in supporting chaotic dynamics in many driven dissipative nonlinear systems.
- It is challenging to identify UPOs in high-dimensional chaotic systems.





Period-1 UPO $u^{\text{upo}_1}(t)$ (red, period $\tau_1 = 1.5586$) stabilized using UDFC method, and pseudo-trajectory $\tilde{u}(t, u_0^{\text{upo}_1})$ (blue, $t \in [0, 100]$) in system (<u>1</u>) with parameters $r = 28, \sigma = 10$, b = 8/3. (Color figure online)

Introduction – Finding UPO

- Usually in two steps:
- Define an adequate guess for an UPO
 - recurrency methods (find sub-trajectories in Direct Numerical Simulation (DNS) that almost close in on themselves)
- Converge the guess to a solution of the system
 - Newton algorithm (like gradient descent)
 - loop convergence algorithm
- Disadvantages: recurrency methods are biased towards the same few frequently visited UPOs (short and less unstable ones)
- Newton algorithm could encounter exponential error amplification when time-integrating a chaotic dynamical system.

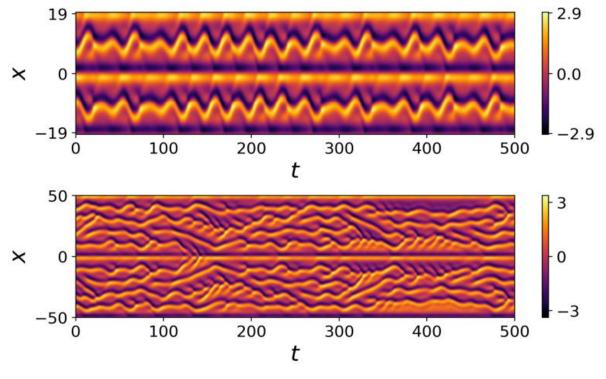
Method – New Way of Finding UPO

- 1. First obtain data from PDE simulation
- 2. Train an autoencoder with data given.
- 3. Do dimensionality reduction with trained autoencoder and find proper orthogonal decomposition (POD) modes in latent space.
- 4. Define loop guesses L: $L(s) = \bar{h} + \sum_{k=1}^{n} a_k(s)\xi_k$
- 5. Decode the guesses back to original phase space.
- 6. Use loop convergence (adjoint solver) + newton optimizer to converge the guesses to true UPOs.

Method – PDE Model

 $u_t + uu_x + u_{xx} + u_{xxxx} = 0$

- 1D Kuramoto-Sivashinsky equation (KSE) is used.
- The spatial domain is L-periodic and L determines the nonlinear property.
- L = 39: Low-dimensional Chaos
- L = 100: Hyperchaos



Method - Autoencoder

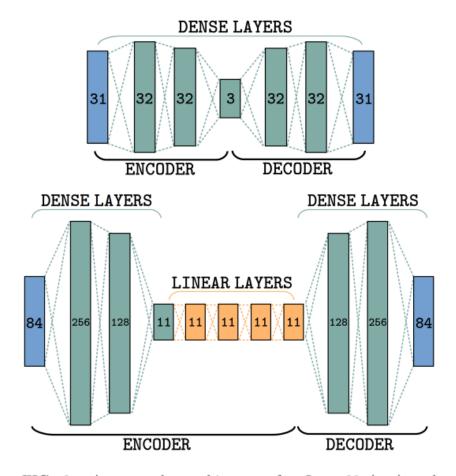


FIG. 2. Autoencoder architecture for L = 39 (top) and L = 100 (bottom, with linear layers for implicit rank minimization [44]). The number in each layer indicates the number of nodes. The dense layers use ReLU activation function.

All layers except the linear layers: $\operatorname{ReLU}(x) = \max\{0, x\}$.

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \frac{||\mathcal{D} \circ \mathcal{E}(\boldsymbol{y}_n) - \boldsymbol{y}_n||^2}{||\boldsymbol{y}_n||^2 + \epsilon}$$

Method – Loop Guess

- Do proper orthogonal decomposition in latent space.
- Consider a long time-series stacked in a matrix U: $U \in \mathbb{R}^{p \times N}$
 - where p is total time step and N is dimension of latent space. $\{u_i\}_{i=1}^p$, and $u_i \in \mathbb{R}^N$.
- Make it zero-mean $\tilde{\boldsymbol{u}}_i = \boldsymbol{u}_i \bar{\boldsymbol{u}},$ Get covariance matrix C $\boldsymbol{C} = \frac{1}{p-1} \tilde{\boldsymbol{U}}^T \tilde{\boldsymbol{U}} \in \mathbb{R}^{N \times N}$
- And get eigenvectors (modes) $C\phi_k = \lambda_k \phi_k$
- Eigenvectors/modes Φ can be seen as fluctuations around the mean flow

Method – Loop Guess

• And then guesses of loops L are generated as:

$$\boldsymbol{L}(\boldsymbol{x},s) = \boldsymbol{\bar{u}} + \sum_{k=1}^{N} a_k(s, \{X_{m,k}\})\boldsymbol{\phi}_k(\boldsymbol{x})$$

• Where statistical properties (mean and covariance) are retained

$$\mathbb{E}_{X,s}[oldsymbol{L}] = oldsymbol{ar{u}}$$
 $\mathrm{cov}_{X,s}(oldsymbol{L}) \coloneqq oldsymbol{C}^{(oldsymbol{L})} = oldsymbol{C}$

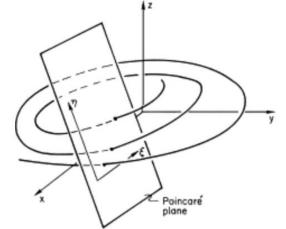
• Some more details:

$$a_{k}(s, A_{:,k}, B_{:,k}) = \sum_{m=0}^{M} \alpha_{m} [A_{m,k} \cos(ms) - B_{m,k} \sin(ms)]$$
$$A_{:,k}, B_{:,k} \sim \mathcal{N}\Big(0, \lambda_{k} \Big(\sum_{m=0}^{M} \alpha_{m}^{2}\Big)^{-1}\Big)$$

Method – Loop Guess

• Here, larger m means higher frequency term, which will tend to generate longer guesses (extra 'twists' or 'turns') $L(x,s) = \bar{u} + \sum_{k=1}^{N} a_k(s, \{X_{m,k}\})\phi_k(x)$

$$a_k(s, A_{:,k}, B_{:,k}) = \sum_{m=0}^{M} \alpha_m [A_{m,k} \cos(ms) - B_{m,k} \sin(ms)]$$



- They verify that M = p, where p is the # of intersections in Poincare sections.
- Basically, larger M (p) means longer UPO guess.

Method – Optimizer

- It uses adjoint solver + newton optimizer to converge the cost J.
- Dynamical system: $\mathbf{u}(t) = \mathbf{f}^t(\mathbf{u}_0) = \mathbf{u}_0 + \int_0^t \mathbf{F} dt'$
- Period T: $f^{T}(\mathbf{u}) \mathbf{u} = \mathbf{0}$
- Then by rescale: $\tilde{\mathbf{u}}(\mathbf{x},s) := \mathbf{u}(\mathbf{x},sT)$.
- And combine equations, we get residual vector r: $r = F(\tilde{\mathbf{u}}) \frac{1}{T} \frac{\partial \tilde{\mathbf{u}}}{\partial s}$

• And cost J:
$$J := \int_0^1 \int_{\mathcal{X}} \mathbf{r} \cdot \mathbf{r} \, d\mathbf{r} ds$$

Method – Latent Gluing of UPOs

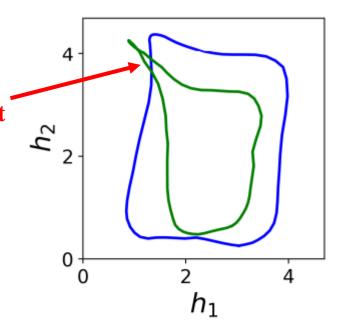
- It glues two orbits in latent space to have a longer guess.
- First find time steps I,J where two UPOs are closest

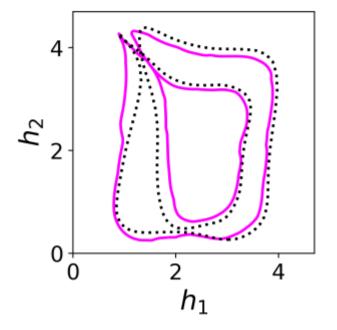
$$I, J = rgmin_{i,j} || \boldsymbol{L}_1^{(i)} - \boldsymbol{L}_2^{(j)} ||_2$$

• Then glue them:

$$m{G}_0 = egin{pmatrix} m{L}_1^{(1:I)} \ m{L}_2^{((J+1):end)} \ m{L}_2^{(1:J)} \ m{L}_2^{((I+1):end)} \end{pmatrix}$$

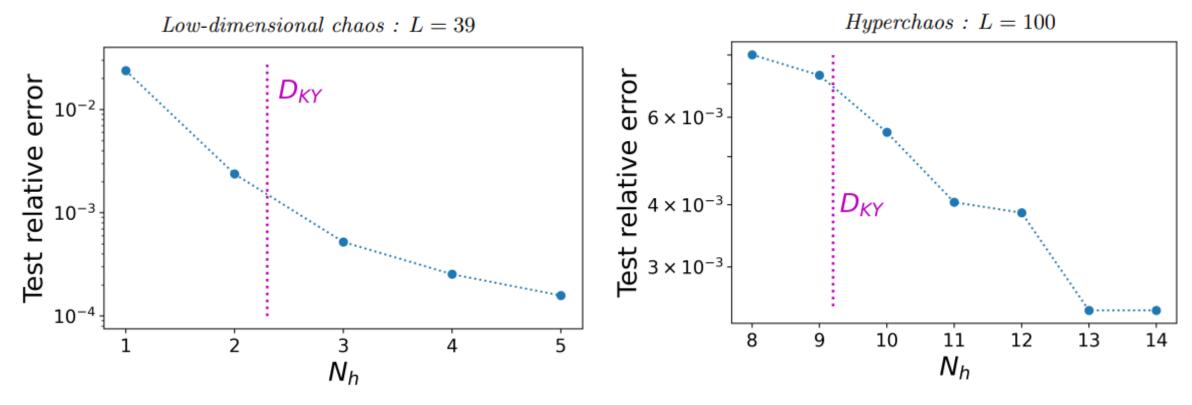
• Finally, to solve the discontinuity, they set high frequency modes to zero keep only the lowest 1/6 positive



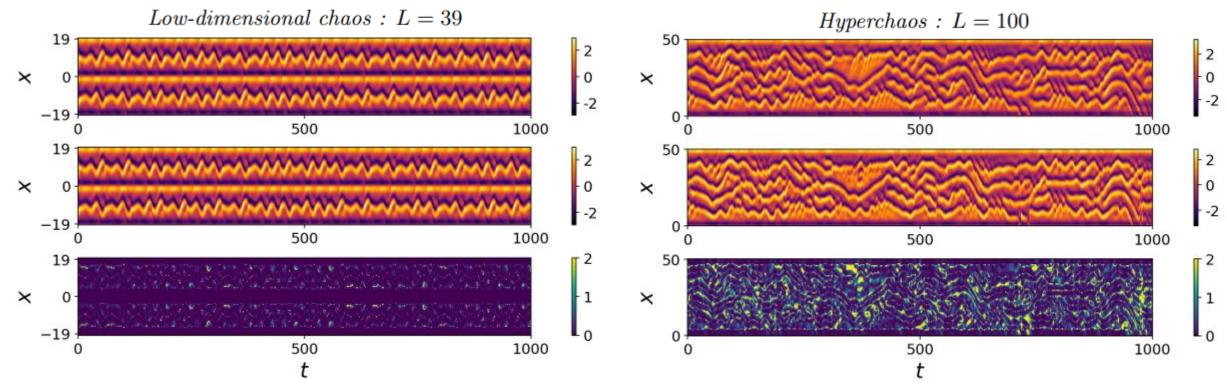


Result – Dimensionality Reduction $(N_x \rightarrow N_h)$

• D_{KY} is the dimension for chaotic attractor, the N_h should be larger than that to retain nonlinear property ($N_h > D_{KY}$)

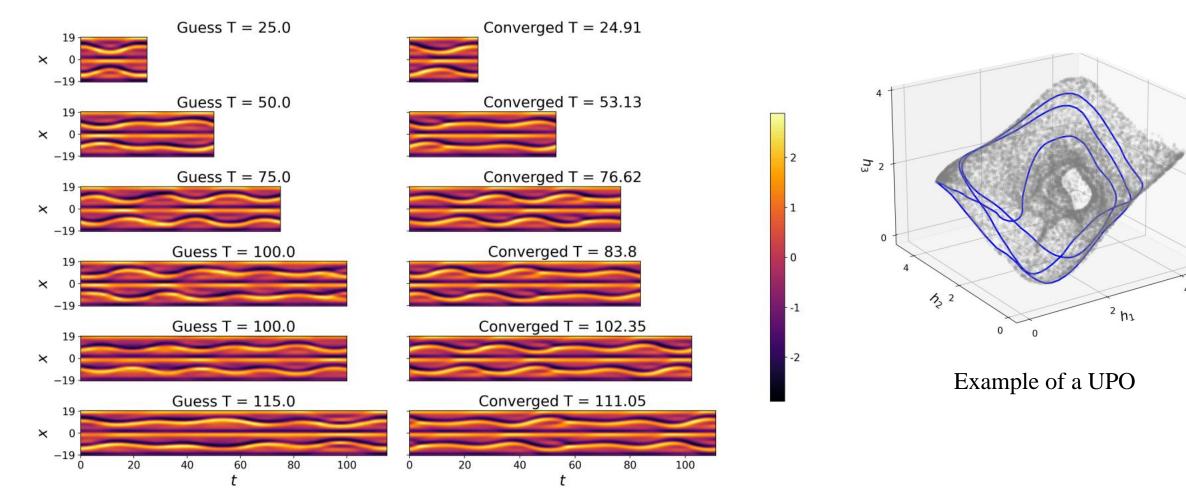


Result – Dimensionality Reduction



- Top: Original phase space
- Middle: Autoencoder output
 - Bottom: Their difference

Result – Loops Guessing (L = 39)



Example of guesses and converged ones

Result – Loops Guessing (L = 39)

					_				
70%-	Туре	Count	Percentage	p	Optimizers get stuck in a local minimum, or require more time	Type	Count	Percentage	p
	24.91	35	17.5	1		24.91	15	2.1	1
	25.37	104	52.0	1		25.37	4	0.6	1
	No convergence		3.0	-		50.37	3	0.4	2
	Fixed points	55	27.5			52.04	2	0.3	2
					to converge	53.13	3	0.4	2
	Guesse	ed period	1 25			57.23	23	3.3	2
76%-	Tuno	Count	Percentage	<i>m</i>	38% -	57.63	20	2.9	2
	Туре		_	p		75.28	35	5.0	3
	24.91	35	7.0	1		75.72	18	2.6	3
	25.37	20	4.0	1		75.94	16	2.3	3
	50.37	78	15.6	2		76.62	40	5.7	3
	52.04	91	18.2	2		76.85	30	4.3	3
	53.13	157	31.4	2		76.95	38	5.4	3
L	57.23	1	0.2	2		77.37	16	2.3	3
	No convergence		9.6		L	85.54	1	0.1	3
	Fixed points	70	14.0			No convergence	385	55.0	

Guessed period 50

p = 1 reappear when the loop converges to a double periodic orbit

Guessed period 75

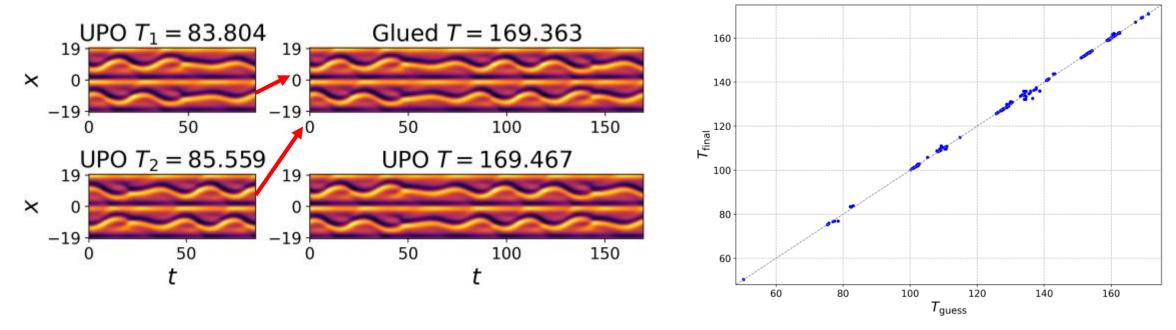
51

Fixed points

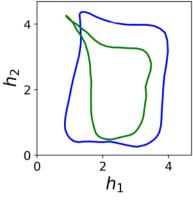
p = 1 reappear when the loop converges to a triple periodic orbit

7.3

Result – Loops Glue Guessing (L = 39)



 $T_{guess} = T_1 + T_2$



Result – Loops Glue Guessing (L = 39)

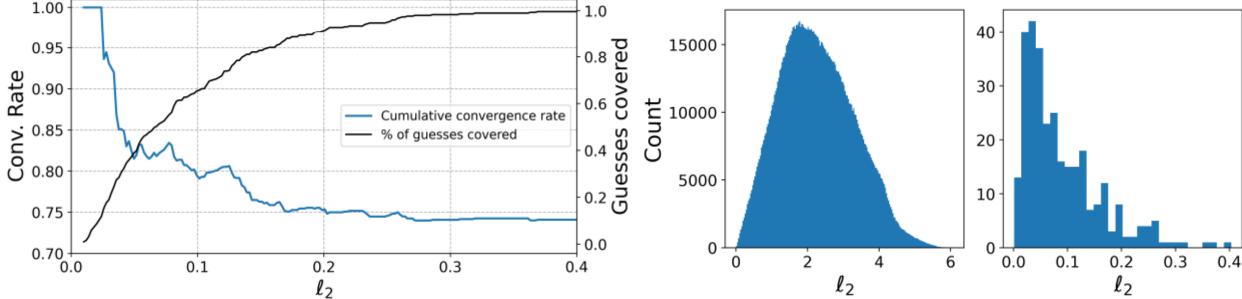
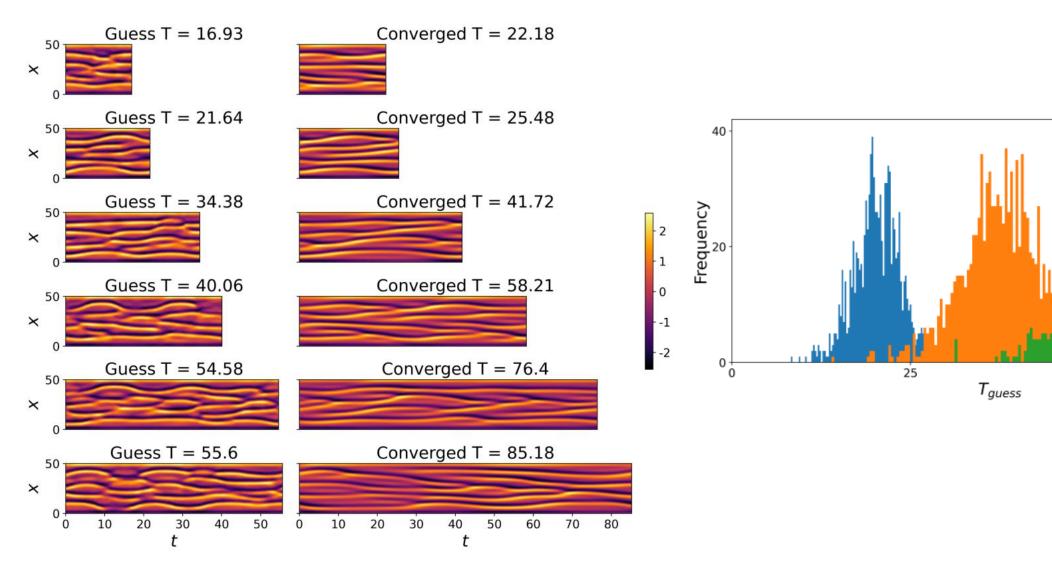


FIG. 12. Left axis: Cumulative convergence rate of glued guesses with distance of closest passage in the latent space less than ℓ_2 (blue). Right axis: percentage of guesses with distance of closest passage in the latent space less than ℓ_2 (black).

FIG. 7. Left: distribution of random ℓ_2 distances of a long time-series in latent space. Right: distribution of ℓ_2 distances between points of closest passage between UPOs with periods T < 100.

$$I, J = \underset{i,j}{\operatorname{arg\,min}} || \boldsymbol{L}_{1}^{(i)} - \boldsymbol{L}_{2}^{(j)} ||_{2} \quad \ell_{2} = || \boldsymbol{L}_{1}^{(I)} - \boldsymbol{L}_{2}^{(J)} ||_{2}$$

Result – Loops Guessing (L = 100)



M = 1

M = 2M = 3

75

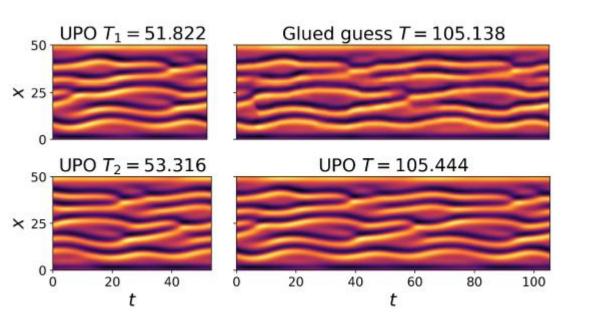
50

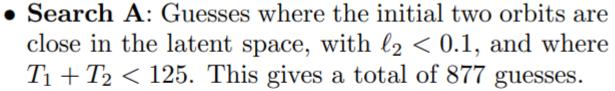
Result – Loops Guessing (L = 100)

M	1	2	3
Guesses	1,000	1,000	1,000
Fixed points	13	0	0
No convergence	834	951	989
UPOs	153	49	11

TABLE V. Summary of the main UPO searches at L = 100 for M = 1, 2 and 3. The success rate clearly drops as M increases, which may be due to multiple factors, such as the crudeness of the guess definition or stopping the convergence too early.

Result – Loops Glue Guessing (L = 100)





• Search B: A random selection of 1,000 glued guesses among those with $T_1 + T_2 < 125$.

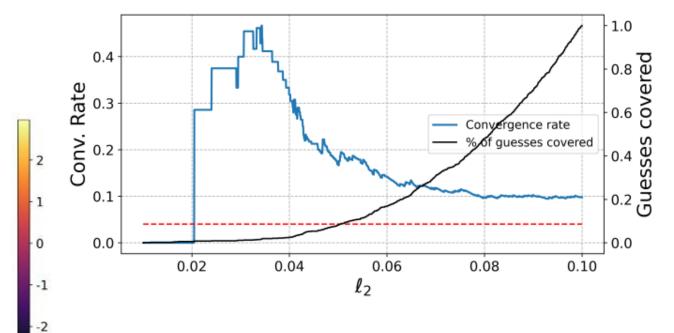


FIG. 20. Left axis: Cumulative convergence rate of glued guesses in search A with distance of closest passage in the latent space less than ℓ_2 (blue). Right axis: percentage of guesses in search A with distance of closest passage in the latent space less than ℓ_2 (black). Red dashed: Convergence rate of search B. The convergence rate for closer orbits is noticeably larger than for random orbits.

Conclusion

- It introduces a new method for generating initial guesses for UPOs by randomly drawing loops in the low-dimensional latent space defined by an autoencoder.
- The convergence rate performs well in low-dimensional chaos and in hyperchaos for small-M.
- The gluing of UPOs is successful and points towards a hierarchy of UPOs where longer UPOs shadow shorter ones.